## What is an example of a dependent t test?

For example, you could use a dependent t-test to understand whether there was a difference in smokers’ daily cigarette consumption before and after a 6 week hypnotherapy programme (i.e., your dependent variable would be “daily cigarette consumption”, and your two related groups would be the cigarette consumption values …

## What is the null hypothesis for an independent samples t test?

The null hypothesis for an independent samples t-test is that two populations have equal means on some metric variable. For example, do men spend the same amount of money on clothing as women? We can’t reasonably ask the entire population of men and women how much they spend.

## What is the purpose of an independent t test?

The Independent Samples t Test compares the means of two independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different. The Independent Samples t Test is a parametric test. This test is also known as: Independent t Test.

## What is a two independent sample t test?

The independent t-test, also called the two sample t-test, independent-samples t-test or student’s t-test, is an inferential statistical test that determines whether there is a statistically significant difference between the means in two unrelated groups.

## Why is Anova used instead of t tests?

The t-test is a method that determines whether two populations are statistically different from each other, whereas ANOVA determines whether three or more populations are statistically different from each other.

## What does a Tukey test tell you?

The Tukey HSD (“honestly significant difference” or “honest significant difference”) test is a statistical tool used to determine if the relationship between two sets of data is statistically significant – that is, whether there’s a strong chance that an observed numerical change in one value is causally related to an …

## Is Anova a parametric test?

Like the t-test, ANOVA is also a parametric test and has some assumptions. ANOVA assumes that the data is normally distributed. The ANOVA also assumes homogeneity of variance, which means that the variance among the groups should be approximately equal.